If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+35x+14=0
a = 7; b = 35; c = +14;
Δ = b2-4ac
Δ = 352-4·7·14
Δ = 833
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{833}=\sqrt{49*17}=\sqrt{49}*\sqrt{17}=7\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-7\sqrt{17}}{2*7}=\frac{-35-7\sqrt{17}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+7\sqrt{17}}{2*7}=\frac{-35+7\sqrt{17}}{14} $
| (-3/4+k)*2+5/4=1/4 | | 0.40x+0.06930)=9.8 | | 12x-7=5+18x | | 16(×-1)=12x+36 | | -4/3h=5 | | 6d+2*d-13)=d*5-5 | | A+7+b=66 | | 3,5*(x+1)=10,5 | | 1.5x=4.05 | | 1/3x+5=2/5 | | 7-9x-4=-15+7x-14 | | 8+0.5x=2,5x | | 8x^2+5x-28=0 | | 2.6x=7.28 | | Y=4x^2+14x-8 | | 3x+14=3+6x-7 | | 5(2y-4)=9(y+4) | | 0=5x+6125^-2 | | 9x-16=2x+6x | | 2h–8=h+17 | | 5x+-8+43=90 | | a+(5+3a)=2a | | X+(3x+13)=105 | | 5x+-8+43=180 | | 1=5x+6125^-1 | | 57(X)=0.81x+168.3 | | 0=5x+6125^-1 | | 11w+40=3 | | 56-3x=36 | | Y=-20x^2+320x-780 | | 10-5(5x-4)=-5 | | 2/5x-1/3×=4 |